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Resonances in Mie scattering by an inhomogeneous atomic cloud
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4Dipartimento di Fisica, Università Degli Studi di Milano - Via Celoria 16, I-20133 Milano, Italy, EU

received 6 September 2011; accepted in final form 17 November 2011
published online 4 January 2012

PACS 42.50.Ct – Quantum description of interaction of light and matter; related experiments
PACS 42.25.Fx – Diffraction and scattering
PACS 42.25.Gy – Edge and boundary effects; reflection and refraction

Abstract – Despite the quantum nature of the process, collective scattering by dense cold samples
of two-level atoms can be interpreted classically describing the sample as a macroscopic object
with a complex refractive index. We demonstrate that resonances in Mie theory can be easily
observable in the cooperative scattering by tuning the frequency of the incident laser field or the
atomic number. The solution of the scattering problem is obtained for spherical atomic clouds who
have the parabolic density characteristic of BECs, and the cooperative radiation pressure force
calculated exhibits resonances in the cloud displacement for dense clouds. At odds with uniform
clouds which show a complex structure including narrow peaks, these densities show resonances,
yet only under the form of quite regular and contrasted oscillations.

Copyright c© EPLA, 2012

Introduction. – Mie theory is the well-known
solution of Maxwell’s equations for the scattering of
electromagnetic radiation by spherical objects [1,2]. Via
calculation of the electric and magnetic fields inside and
outside the object the theory predicts the total optical
cross-section, which determines the amount of scattered
light, and the form factor, which characterizes the far-field
radiation pattern [3,4]. Simple solutions are available in
regimes where the object size R differs very much from
the radiation wavelength λ, or when the refractive index
m is close to unity. For example, for small phase shifts
|m− 1|R/λ≪ 1 in optically dilute media |m− 1| ≪ 1, one
enters the Rayleigh-Debye-Gans regime, whereas for small
particles and small phase shifts, one obtains Rayleigh
scattering by point-like objects.
For objects whose size is of the order of the radiation

wavelength (e.g. water droplets in the atmosphere or in
emulsions), Mie’s full theory has to be used to find the
scattering pattern. Mie scattering differs from Rayleigh
scattering in several respects. While the intensity of
Rayleigh-scattered radiation scales with the object size
as R6 and is identical in forward and backward direc-
tion, the intensity of Mie-scattered radiation is roughly
independent of wavelength, and it is larger in forward
direction than in backward direction. The greater the
particle size, the more light is Mie-scattered into forward
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direction. The hallmark of Mie scattering, however, are
the Mie resonances: those are sets of parameters (size,
refraction index, wavelength), where Mie scattering is
particularly strong or particularly weak. The sharpness
of some Mie resonances makes them useful for measuring
unknown parameters such as particles’ size.
Recently, a series of papers demonstrated how collec-

tivities of point-like Rayleigh scattering particles may
cooperate [5–10] in scattering radiation into the forward
direction and the relationship to Mie scattering was
pointed out [11,12]. Here, we show that the theory of
collective scattering by smooth distributions of point-like
scatterers is equivalent to Mie scattering by demonstrating
that the premisses of both models are identical. Hence, we
may apply the Mie scattering technique to atomic clouds
as long as their granularity, as well as collisions and nonres-
onant atomic interactions, can be neglected.
In Mie theory, boundary conditions of the scattering

object assume a fundamental role: these are generally
sharp since dielectric spheres typically have homogeneous
densities, while atomic clouds, in general, have parabolic
or Gaussian density distributions and smooth boundaries.
Within the framework of the Mie theory, we compare
calculations for homogeneous and parabolic densities, and
identify the impact of sharp or smooth boundaries on
the occurrence and shape of Mie resonances. Our study
reveals that some resonances will persist, although not the
sharpest ones: this means that a jump in the refractive
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index is not required, as one could expect from classical
cavities where smooth gradients of the index also allow for
mode propagation and selection (e.g. graded-index fibers).
Finally, we predict experimental regimes where reso-

nances in Mie scattering can be observed in atomic clouds
by monitoring the radiation pressure force acting on the
cloud’s center-of-mass. To this aim, we calculate the reso-
nances as a function of atom number and pump laser
detuning. A major advantage of using resonant atoms as
scatters is that the refraction index can be varied over very
large ranges by changing the cloud’s density and volume,
or simply by tuning the light frequency. This greatly facil-
itates the detection of the resonances.
In this letter, we first show the equivalence of the coop-

erative scattering by two-level atoms and the Mie scat-
tering, assuming a scalar photon model and reducing the
scattering equation for the excitation probability ampli-
tude to a differential Helmholtz equation with complex
refraction index. Then, we solve the Mie problem and
calculate the radiation pressure force, before discussing
the presence of Mie resonances in spherical clouds with
parabolic densities. Finally, we draw our conclusions.

From collective atomic scattering to Mie scat-

tering. – In his seminal paper [1], Gustav Mie proposed
an analytical solution to the scattering of light over
extended objects under the form of infinite series. This
theory was originally developed for homogeneous media
of refractive index m0, in which the elementary solu-
tions to the wave equation are known to be of the form
ψnl = jn(m0k0r)Ynl(θ, ϕ) (where jn is the spherical Bessel
function, and Ynl the spherical harmonics), while outside
they simply read jn(k0r)Ynl(θ, ϕ). The continuity of the
fields at the boundaries eventually determines the scatter-
ing coefficient for each (n, l) mode.
On the other hand, the cooperative scattering by a

sample of N two-level atoms (with random position rj ,
transition frequency ωa and linewidth Γ= d

2ω3a/2π�ǫ0c
3,

where d is the electric dipole matrix element), illuminated
by a resonant uniform field is described by the following
coupled equations [7–9]:

dβj
dt
=

(

iΔ0−
Γ

2

)

βj −
i

2

d

�
Ei(rj)

− Γ
2

∑

m �=j

exp(ik0|rj − rm|)
ik0|rj − rm|

βm, (1)

where j = 1, . . . , N and βj is the probability amplitude of
excitation of the jth atom, Ei(r) =E0e

ik0·r is the electric
field of the incident laser and Δ0 = ω0−ωa its detuning
with respect to the atomic transition, where ω0 = ck0. In
this approach, short-range dipole terms and polarization
effects are neglected [13]. Neglecting granularity effects,
the cloud can be described by a continuous field β(r, t),
whose steady-state regime is given by

eik0·r = (2δ+ i) β̃(r)

+

∫

dr′ρ(r′)
exp(ik0|r− r′|)
k0|r− r′|

β̃(r′), (2)

where ρ(r) is the atomic density, δ=Δ0/Γ and we have
set

β(r) =
dE0
�Γ
β̃(r). (3)

Let us remark that the kernel of eq. (2) is the Green
function for the Helmholtz equation, that is

(∇2+ k20)
exp(ik0|r− r′|)
|r− r′| =−4πδ(r− r′) (4)

and that (∇2+ k20)exp(ik0 · r) = 0. Then, applying (∇2+
k20) on eq. (2), we obtain that β̃(r) satisfies the Helmholtz
equation [14,15]

[∇2+ k20m2(r)]β̃(r) = 0, (5)

where m(r), the cloud refractive index, is given by

m2(r) = 1− 4πρ(r)

k30 (2δ+ i)
. (6)

Hence, the cloud of cold atoms acts on the light as
a “classical” medium of index m(r), whose imaginary
part originates in the single-atom decay term1: it is here
responsible for the absorbing nature of the cloud, and
vanishes only in the limit of far-detuned incident laser.
For a cloud with spherical symmetry m(r), the solu-

tions of the wave equation can be decomposed along
the orthogonal basis of the spherical harmonics [4] as
∑∞
n=0

∑n
s=−n un(r)Yns(θ, ϕ) where the radial modes un

satisfy

u′′n(r)+ 2
u′n(r)

r
+

[

m2(r)− n(n+1)
r2

]

un = 0. (7)

Since the problem is axi-symmetric, only the s= 0 modes
are relevant, and the solution reads

β̃(r) =
√
4π

∞
∑

n=0

√
2n+1inβnun(r)Yn0(r̂), (8)

where r̂ is a unit vector in the direction of r. As for the
incident wave, it decomposes as

exp(ik0 · r) =
√
4π

∞
∑

n=0

√
2n+1injn(k0r)Yn0(r̂). (9)

Since the exponential kernel is diagonal in the basis of the
spherical harmonics,

exp(ik0|r− r′|)
k0|r− r′|

= 4πi

∞
∑

n=0

n
∑

s=−n

Yns(r̂)Y
∗
ns(r̂

′)

×
{

jn(k0r
′)h
(1)
n (k0r) for r > r

′,

jn(k0r)h
(1)
n (k0r

′) for r� r′,
(10)

1Notice that the imaginary term in eq. (6), taking into account
absorption and so the incoherent damping of the excitation, was not
considered in ref. [15] and only phenomenologically included in the
last section of that paper. In the present analysis it is included in
the model from the beginning.
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where h
(1)
n (z) are the spherical Hankel functions. We then

introduce fn(r) such that
∫

dr′ρ(r′)
exp(i|r− r′|)
k0|r− r′|

un(r
′)Yn0(r̂

′) = fn(r)Yn0(r̂),

(11)
so that, assuming ρ(r) = 0 for r >R,

fn(R) = 4πih
(1)
n (k0R)

∫ R

0

ρ(r′)r′2un(r
′)jn(k0r

′)dr′. (12)

Then, the projection of eq. (2) on mode n leads to

jn(k0r) = (2δ+ i)βnun(r)+βnfn(r). (13)

Using eq. (12) and defining

λn = 4π

∫ R

0

ρ(r)r2un(r)jn(k0r)dr, (14)

we obtain

βn =
jn(k0R)

(2δ+ i)un(R)+ iλnh
(1)
n (k0R)

. (15)

Thus, the exact solution to the scattering problem is
obtained under the form of infinite series over the spherical
modes, as it is reminiscent of Mie’s solution [1,4]. In
the latter approach, the coefficients of scattering for
each mode are determined by using the continuity of
the tangential electric and magnetic fields, and of their
derivatives, at the cloud boundaries. In our problem, we
considered a scalar electric field only, and assuming it is
orthoradial, it reads [9]

Es(r) =−
dk20
4πǫ0

∫

dr′ρ(r′)
exp(ik0|r− r′|)
|r− r′| β(r′). (16)

Now, the electric field expresses in two different ways
inside (r <R) and outside (r�R) the cloud,

E(out)s (r) =
E0
2i

∞
∑

n=0

(2n+1)inβnλnh
(1)
n (k0r)Pn(cos θ), (17)

E(in)s (r) =
E0
2i

∞
∑

n=0

(2n+1)inβnPn(cos θ)4π

×
[

(
∫ r

0

dr′r′2un(r
′)jn(k0r

′)

)

h(1)n (k0r)

+

(

∫ R

r

dr′r′2un(r
′)h(1)n (k0r

′)

)

jn(k0r)

]

. (18)

A straightforward calculation shows that Es(r) and
∂Es(r)/∂r as given by eqs. (17) and (18) are continuous
at the cloud boundary r=R. This allows to conclude
that our solution is the same as the one proposed by
Mie, although we did not make a direct use of continuity
hypotheses for the electromagnetic fields. Let us also
remark that our solution holds for any radial solution
un(r) of the Helmholtz equation, i.e. it applies to any
spherical cloud with finite boundary at r=R.

Mie resonances in nonuniform resonant media.

– The treatment of scattering in nonuniform media is
difficult due to the lack of explicit solutions to the wave
equation in that case, so numerical approaches are the
most common to tackle with this problem [4]. We shall
here treat the case of homogeneous samples, and of those
with a quadratic dependence of the atomic density over
the radius.
In the first case, the atomic density of a cloud of

radius R is ρ0 = 3N/4πR
3, whereas its refractive index is

constant m0 =
√

1− 3N/[(k0R)3(2δ+ i)] and the solution
of the wave equation inside the cloud is simply un(r) =
jn(k0m0r). Thanks to the properties of the Bessel func-
tions [16], λn can be calculated explicitly as

λn = (2δ+ i)(k0R)
2[m0jn−1(k0m0R)jn(k0R)

− jn−1(k0R)jn(k0m0R)]. (19)

As for clouds of size R, with a parabolic density ρ(r) =
(5N/2V )[1− r2/R2] and volume V = 4πR3/3, their
spatially dependent refraction index reads

m2q(r) =m
2
c + γ

2r2, (20)

withmc =
√

1− (15/2)N/[(k0R)3(2δ+ i)] the index in the
core of the sample, and γ2 = (15/2)N/[(k0R)

5(2δ+ i)]. Let
us remark that when k0R→∞, but at constant central
density N/V and at fixed r, eq. (7) tends toward the
equation for the spherical Bessel function jn(k0mcr): the
homogeneous medium limit is then recovered, as expected
since the center of the cloud is then locally homogeneous.
Using the substitution [17] un(r) = r

−3/2wn(x), with x=
γr2/2, we obtain a Coulomb wave equation for wn(x), well
known in nuclear physics [18],

w′′n(x)+

[

1+
m2c
2γx
−
(

n(n+1)

4
− 3
16

)

1

x2

]

wn(x) = 0.

(21)

Its solutions are the so-called Coulomb wave functions [19]
Fn/2−1/4(−m2c/4γ, x). The irregular Coulomb wave func-
tion G is discarded because of its 1/r divergence at the
origin, just as the spherical Hankel function is discarded
to describe the field inside homogeneous media. Thus, we
get the following solution for the radial component of the
field:

un(r) =
1

r3/2
Fn
2
− 1
4

(

−m
2
c

4γ
,
γr2

2

)

. (22)

Let us introduce the structure factor s(k) = s(θ, ϕ) for a
direction k= k0(sin θ cosϕ, sin θ sinϕ, cos θ), defined as

s(k) =
1

N

∫

dr′ρ(r′)β̃(r′)e−ik·r
′

. (23)

After integration over space, it turns into

s(k) =

∞
∑

n=0

(2n+1)βnλnPn(cos θ), (24)
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Fig. 1: (Colour on-line) Intensity scattered by the sample along
the illuminating axis for homogeneous (thin black line) and
quadratic (thick blue line) continuous densities, and for a N -
atom homogeneous cloud with random atomic distribution
(black dots). Simulations realized for N = 2 · 103 and σr =
k0
√

〈r2〉= 1 (and thus σr =
√

3/5k0R for a homogeneous

density, and σr =
√

3/7k0R for a quadratic one).

where we have made use of

∫ 2π

0

dϕ′ sinϕ′e−i(a cosϕ
′+b sinϕ′) = 2πJ0(

√

a2+ b2),

∫ 1

−1

dy J0(r
′ sin θ

√

1− y2)Pn(y)e−iyr
′ cos θdy=

2i−njn(r
′)Pn(cos θ). (25)

Then, in the far-field limit (r≫R), the scattered intensity
simply reads

Iscat(r, θ, ϕ) =
E20
4(k0r)2

|s(θ, ϕ)|2. (26)

Using the analytic expressions obtained for the homoge-
neous and the parabolic density, we now turn to studying
the resonances in Mie scattering for atomic clouds. Simu-
lations of the intensity scattered along the illuminating
axis reveal that homogeneous samples exhibit some spiky
irregular structures, whereas inhomogeneous (parabolic)
samples are characterized by more regular oscillations (see
fig. 1). This suggests not only that the resonances do not
only originate in the sharp boundaries of homogeneous
obstacles, but, on the contrary, that they may even be
easier to observe in media with smooth densities. Actually,
the numerous spikes in homogeneous media can be inter-
preted as “whispering gallery modes” [20–22], that propa-
gate along the surface of the cloud, within a local minimum
of the effective radial potential created by the jump of
the medium’s index. On the other hand, assimilating the
cloud to a cavity, one can interpret the regular oscillations
as cavity modes which survive despite the smoothening of
the boundaries of the potential. Thus, the smoothening
of the index leads to a modification of the local minimum
for the effective potential which supports the whispering
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Fig. 2: (Colour on-line) (a) Radiation pressure force as a
function of the number of atoms N in the sample and for
different detuning, namely δ=−667 (black lines) and δ=−50
(blue lines). (b) Radiation pressure force as a function of the
phase shift φ for δ=−667 (blue curves) and of the square of
the structure factor |s(θ= 0)|2 (black curves), proportional to
the far-field scattered light in the forward direction. For both
figures, the thin curves correspond to homogeneous samples,
the thick ones to quadratic densities. Simulations realized for
σr = 10.

gallery modes [21], so that the latter may be attenuated
or broadened (see fig. 1), or even disappear (see fig. 2).
Finally, the simulations confirm that the theory for

continuous media is in good agreements with N -body
samples (see fig. 1), although discrepancies appear for
smaller values of detuning, and thus larger refractive
index. However, simulations where N is tuned reveal that
this effect is due to the small number of particles that one
can consider numerically: since finding the stationary solu-
tion of (1) requires the inversion of a N ×N matrix prob-
lem, simulations are typically limited to systems of at most
N ∼ 2 · 103 particles. Thus, the finite-N effects observed in
fig. 1 are expected to vanish for larger number of parti-
cles that one can typically find in a cold atomic cloud
(that is N = 105–107). More specifically, one can show
that N/σ2r ≫ 1 is required to neglect granularity [9,10].
This highlights the relevance of the continuous approach to
model the scattering process of large-N clouds, on which
we shall now focus.

Resonances in Mie scattering for cold atomic

clouds. – One of the effects of the light scattering
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by a cloud of cold atoms is the displacement of its
center of mass (e.g. measured by time-of-flight imaging
techniques [10,12]) due to the radiation pressure force,
which can be interpreted microscopically by a sequence of
absorption and spontaneous emission cycles. More specifi-
cally, the atom absorbs a laser photon with k= k0ẑ and re-
emits it in a direction k= k0(sin θ cosϕ, sin θ sinϕ, cos θ).
The resulting radiation pressure force reads [9]

Fz =−�k0
Ω20
Γ
Im(s(k0))−

�k0Ω
2
0N

8πΓ

∫

dk cos θ|s(k)|2,
(27)

where Ω0 = dE0/� is the Rabi frequency of the incident
field. In the framework of Mie scattering, the absorption
part of the force reads

F (a)z =−�k0
Ω20
ΓN

∞
∑

n=0

(2n+1)Im(λnβn). (28)

As for the emission part, using the orthogonality of
Legendre polynomials, as well as the relation
∫ 1

−1

xPn(x)Pn′(x)dx= 2
(nδn,n′+1+n

′δn′,n+1)

(2n+1)(2n′+1)
, (29)

it reads

F (e)z =−�k0
2Ω20
ΓN

∞
∑

n=0

(n+1)Re(λnλ
∗
n+1βnβ

∗
n+1). (30)

These analytical expressions then allow to investigate
numerically the presence of resonances in Mie theory
in large-N samples [10,23], such as those produced in
Tübingen [12], where clouds of size σr = k0

√

〈r2〉 ≈ 10
and N ∼ 106 were studied. The simulations reveal that
the radiation pressure force actually exhibits resonances
when the number of atoms N is tuned, at fixed detuning
δ (see fig. 2(a)). Their contrast is significantly higher at
(negative) larger values of δ yet they require a larger
number of atoms. Plotting the force oscillations as a
function of the phase shift of on-axis light rays,

φ= k0

∫

[Re(m(0, 0, z))− 1] dz, (31)

makes clear that φ is the relevant variable to characterize
the resonances in clouds with quadratic densities, i.e.
cavity modes. Note that since the absorption and emission
forces compensate at small φ, Mie oscillations actually
appear in the radiative force at values of φ higher than
for the scattered light (typically 4π). The period of
these oscillations can be qualitatively retrieved using the
formulae for the homogeneous media (19). If one considers
a large cloud k0R≫ 1, then jn(x)≈ sin(x−nπ/2)/x (for
x≫ 1) leads to the approximate expression

λn ≈
2δ+ i

m0

[

m0+1

2
sin((m0− 1)k0R)

+
m0− 1
2

sin((m0+1)k0R−nπ)
]

, n2 < k0R. (32)
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Fig. 3: (Colour on-line) (a) Radiation pressure force for a
σr = 10 cloud as a function of the detuning δ and for different
numbers of particles, namely N = 106 (black line) and N =
105 (blue line). The thin curves correspond to homogeneous
samples, the thick ones to quadratic densities. (b) Intensity
scattered along the illuminating axis |s(θ= 0)|2 (black thin
curve) as a function of the detuning, as well as real (plain
blue line) and imaginary (dash-dotted blue line) parts of the
refractive index m0 of the cloud, for a cloud of size σr = 100
and homogeneously filled with N = 2 · 106 particles.

This explains why the radiation pressure force will oscillate
with the value of the phase shift (φ= 2Re(m0− 1)k0R for
homogeneous clouds, and (4/3)Re(m0− 1)k0R for samples
with quadratic densities). Note that in the case of a dilute
cloud such that |m0− 1| ≪ 1 (yet |m0− 1|k0R can be
large), one has φ≈−(2/3)b0δ/(4δ2+1), which highlights
the role of the optical thickness [7],

b0 =
6π

k20

∫

ρ(0, 0, z)dz, (33)

instead of the atomic density in the collective scattering
problem [10]. Since optical resonances will emerge for
N/δσ2r ∼ 1, the conditions for the observation reads N >
δσ2r . Finally, let us remark that when the spatial density
N/σ3r becomes significant, other effects such as near-field
dipole-dipole interactions have to be accounted for [11,13].
Here, due to the special role of the wavelength of the

illuminating laser on resonant atoms, the detuning δ
can also be used as a control parameter to generate Mie
oscillations: at odds with dielectric droplets experiments
where it changes the effective size of the cloud klaserR,
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it here modifies only the index of the cloud. Figure 3(a)
depicts this phenomenon when the incident wavelength
is tuned, and one recovers Mie oscillations in that case
as well. As discussed previously, clouds with smooth
(quadratic) densities exhibit more regular and more
contrasted oscillations. Let us remark that using δ as
a control parameter, the curves Fz(φ) or Iscat[θ= 0](φ)
are extremely similar to those where N is tuned (see
fig. 2(b)), since only the refractive index is important,
and the phase shift φ captures this information.
Finally, we conclude by pointing out that the reso-

nances in Mie theory can be observed as well at
positive detunings: as can be observed in fig. 3(b) the
scattered intensity is rather symmetric in δ, which can,
for example, be understood by the fact that the phase
shift φ≈−(2/3)b0δ/(4δ2+1) is antisymmetric in δ (yet
the imaginary part of the refractive index is not, thus
the difference in amplitudes). The symmetry decreases
with δ, when the refractive index deviates significantly
from unity, yet model (1) then loses its validity, and a
more exhaustive model is required to study the light
scattering [13].

Conclusion. – We studied resonances in Mie theory
in resonant media with parabolic densities, a case most
appropriate for cold atomic clouds. It was shown that the
Mie oscillations were more regular in the case of smooth
(parabolic) densities, where only cavity modes survive,
and that they can be observed as well in the scattered
intensity as in the radiation pressure force, even though
for the lowest phase shifts the radiation pressure force is
a less sensitive measurement.
The parameters of figs. 2(a) and 3(a) correspond to

the experimental case of [12], and it suggests that the
resonances can be detected in the available range of
parameters. Note that the main difference with this
experiment is that the cloud was then cigar-shaped,
and the density assumed to be Gaussian; yet parabolic
densities are definitely more realistic than homogeneous
ones to describe the Gaussian case.
Furthermore, the contrast of the resonances is connected

to the imaginary term of the cloud’s index (6), as discussed
in [15]. More specifically, the smaller the single-atom
decay term (compared to the detuning), the larger the
contrast. Hence, large-N and far-detuned configurations
will generate sharper resonances, for they minimize the
single-atom decay contribution.
A more thorough treatment would of course require

considering vectorial fields [15]. Nevertheless, simulations
reveal that the scalar approach provides an accurate
description of resonances in Mie scattering for large and
dilute atomic clouds.
Finally, we note that tuning the illuminating laser

toward the blue (δ > 0) can also allow for the observa-
tion of the resonances. However, when 4πρ/(2δk30)> 1,
the sample becomes strongly dissipative since Re(m2)

becomes negative (see eq. (6)): radiation trapping will
then emerge [24], that will damp the scattering process
and eclipse the resonances. The occurence of this phenom-
enon in cold atomic clouds will be the object of future
works.
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